The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration.
نویسندگان
چکیده
Microscopic pores present in the epidermis of plant aerial organs, called stomata, allow gas exchanges between the inner photosynthetic tissue and the atmosphere. Regulation of stomatal aperture, preventing excess transpirational vapor loss, relies on turgor changes of two highly differentiated epidermal cells surrounding the pore, the guard cells. Increased guard cell turgor due to increased solute accumulation results in stomatal opening, whereas decreased guard cell turgor due to decreased solute accumulation results in stomatal closing. Here we provide direct evidence, based on reverse genetics approaches, that the Arabidopsis GORK Shaker gene encodes the major voltage-gated outwardly rectifying K(+) channel of the guard cell membrane. Expression of GORK dominant negative mutant polypeptides in transgenic Arabidopsis was found to strongly reduce outwardly rectifying K(+) channel activity in the guard cell membrane, and disruption of the GORK gene (T-DNA insertion knockout mutant) fully suppressed this activity. Bioassays on epidermal peels revealed that disruption of GORK activity resulted in impaired stomatal closure in response to darkness or the stress hormone abscisic acid [corrected]. Transpiration measurements on excised rosettes and intact plants (grown in hydroponic conditions or submitted to water stress) revealed that absence of GORK activity resulted in increased water consumption. The whole set of data indicates that GORK is likely to play a crucial role in adaptation to drought in fluctuating environments.
منابع مشابه
Knockout of the guard cell K+out channel and stomatal movements.
T he central roles of potassium channels in regulating membrane potential and controlling action potential repolarization are well documented (1). In plants an additional important function of potassium channels in mediating long-term potassium transport during cell movements, turgor changes, and tropisms has been proposed. Two guard cells surround each stomatal pore in leaves and control the o...
متن کاملClustering of the K+ channel GORK of Arabidopsis parallels its gating by extracellular K+
GORK is the only outward-rectifying Kv-like K(+) channel expressed in guard cells. Its activity is tightly regulated to facilitate K(+) efflux for stomatal closure and is elevated in ABA in parallel with suppression of the activity of the inward-rectifying K(+) channel KAT1. Whereas the population of KAT1 is subject to regulated traffic to and from the plasma membrane, nothing is known about GO...
متن کاملRegulation of the ABA-sensitive Arabidopsis potassium channel gene GORK in response to water stress.
The phytohormone abscisic acid (ABA) regulates many stress-related processes in plants. In this context ABA mediates the responsiveness of plants to environmental stresses such as drought, cold or salt. In response to water stress, ABA induces stomatal closure by activating Ca2+, K+ and anion channels in guard cells. To understand the signalling pathways that regulate these turgor control eleme...
متن کاملReactive Oxygen Species-Dependent Nitric Oxide Production Contributes to Hydrogen-Promoted Stomatal Closure in Arabidopsis.
The signaling role of hydrogen gas (H2) has attracted increasing attention from animals to plants. However, the physiological significance and molecular mechanism of H2 in drought tolerance are still largely unexplored. In this article, we report that abscisic acid (ABA) induced stomatal closure in Arabidopsis (Arabidopsis thaliana) by triggering intracellular signaling events involving H2, rea...
متن کاملDiurnal and circadian regulation of putative potassium channels in a leaf moving organ.
In a search for potassium channels involved in light- and clock-regulated leaf movements, we cloned four putative K channel genes from the leaf-moving organs, pulvini, of the legume Samanea saman. The S. saman SPOCK1 is homologous to KCO1, an Arabidopsis two-pore-domain K channel, the S. saman SPORK1 is similar to SKOR and GORK, Arabidopsis outward-rectifying Shaker-like K channels, and the S. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 100 9 شماره
صفحات -
تاریخ انتشار 2003